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LETTER TO THE EDITOR 

A second class of solvable potentials related to 
the Jacobi polynomials 

Brian Wesley Williams 
Department of Chemistry, Buckncll Unwcrssy, Lensburg, Pennsylw“ 17837, USA 

Received 22 March 1951 

AbrtnPt Recently, L k a ,  has used a nmple method forgPneratingsolvable wave equations 
to ~ m s t r u c t  potent~als whose solurtons mclude as fanorr Jacob, polynomials of functions 
g(x) which solve speciFlc differential equations ApjliCdtion of this method IO a previaurly 
unconrtdered d%fferenaal equarxon tnwlvmg lacobi polynomtak results m a new class of 
d v a b l e  potentials missing from earlier compilattons An interesting property of there iiew 
potentials is that when two of their defining pammeteers are fixed. they all possess the Same 
energy e~geenvalue s p e c “  independent of an) change in a third parameter, leading to 
an indefinite number of different  potential^ with the same energies 

With the advent of supersymmetric quantum mechanics and shape invariance, interest 
in exact solutions of single dimensional wave equations has increased markedly. LCvai 
(1989, 1991), building on the work of Dabrowska (1988), has suggested a simple 
method for generating exactly solvable single dimensional wave equations involving 
orthogonal polynomials. Generally, any function F(g(x)) satisfying the second-order 
differential equation 

can serve as the basis for a wavefunction 

‘W) =f(x)F(g(x)) 

satisfying 

d2Y 
-+(E - V(X))T = 0 
dx‘ 

wbere f ( x )  is given by 

and the second term in the wave equation is given by 

E - V ( x )  = R(g(x))(g’)’-(f’’/fl. 

In terms of g, ( 5 )  can be written 

( 6 )  1 g”’ 3 [“’I* [ l d Q  dg 1 E - V ( x ) = - - -  - +(g‘)2 R(g)-----Q’(g) . 
2g’ 4 g‘ 
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LCvdi's approach has been to determine the Q(g) and R(g) corresponding to 
specific orthogonal polynomials, and to se? at least one of the terms on the right in 
( 6 )  to a constant to represent E This leads to differential equztions in g(x) of the f o m  

(g')'H(g) =constant, C (7) 
where H ( g )  depends on the particular term in (6)  under consideration. Once suitable 
g(x) have been found in this manner, the parameters in (6) are redefined such that 
the potentia2 V ( x !  is no longer dependent o the index I! ofthe aehagona! po!ynomiz!, 
which serves as the quantum number for the re-parametrized potential. 

For the Jacobi poiynomials P;@(g(x,), L6vai considered the differential equations 

(g')2/(1-gZ)= c fg')'/(l-g')*= c (g')'g;(l-g*)z= c (8) 
obtaining the g(x) corresponding to his type- of solutions PI, PI1 and PIII. However, 
for Jacobi polynomials, the functicn 

(9) F(g) = ( 1  - g ) ' " + " / ~ , l . ~ g ) ' B + l , i z p ~ . a  

Q(g) = 0 

n ( g )  

satisfies (1) where 

(Abramowitz and Stegun, 1970, equation 22.6.3). For Q(g) and R(g) in (101, application 
of (6) resalts in 

and, following the procedure outlined, the previously unconsidered equations 

and 

arising frsm the first two terms in (11). 
Consider a solution g(x) of (12). Defining a function h(x)  = --g(x) shows that 

h ( x )  solves (13). Hence for the purpose of finding solvable potentials, only one of 
these two differential equations need be considered. One general solution of (13) is 
g(r)=a exp(-x) - 1, where a is an arbitrary constant. Substitution into (11) gives 

1 a2 exp(-2x) p2 
4 (2-a exp(-x))"-Q 

E -  V(X, = f - ( l -G)  

(14) 
[2n(n+c? + p  + I ) + ( n  + I)(p+l)] a exp(-x) 

2 (2 -a  exp(-x)) 
+ 
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The dependence of V(x) on the quantum number n can be removed as follows. Set 

A+(a+l)(a,-  1)/4 _. -[ n + (a + 1)/2]. 
’= n+(n+1)/2 

Then 

(a I)A (a +1)2(n -1)/4 
2n/3=2A+(c~-l)(a+1)/2- . - - 2 n 2 - n ( a + l )  (16) 

n+(a+ i j j i  n i < n + i j / 2  

and 

(a + l )A  +(a+I)*(a - l)/4 
(a + I)(’ +2) =-- --(a + 1) ’ /2+(a+ I). 

n+(a+1)/2 ~ + ( a  + 1)/2 

Combining (16) and (37) gives 

2n(n+a + p +  l)+(a+l)(/3+1)=2A 

and substitution into (14) gives 

a2exp(-2x) AQ exp(-x) 
(2-a exp(-x))’ 2-a  exp(-x) V(x)=$(l-a2) +: 

and a potential independent of n From (2), (4) and (IO), 

where Y ( x )  is nm normalized, and a and 6 are defined as above. 
In order to have ‘Yx) which are square integrable, some conditions need to be 

imposed on the possit Ee ’ dues of o( and /3 in (20). From the definition of the Jacobi 
poiynomiais (Abramowitz and Stegun 1970j, the initiai restriction is that a,p> -i. 
This condition on a ensures that the second factor in Y(x)  remains finite for positive 
x. The extm condition impnred on p by (20) is that /3 remain positive. From (15) this 
leads to the extra condition that the quantum number n satisfies 

n*+(n+f ) (a+ l )  < A. (21) 

This equation has several implications for the interrelationship of a, A and n. Basically, 
for a given a, there is a minimum value of A required before any n 5 0 can be obtained. 
likewise for fixed a and A, there are h i t s  set on the maximum value of n In terms 
of a, A and n, the energy eigenstates are given explicitly as 

The potentials V ( x )  and wavefunctions P(x) can be viewed as generalizations of 
the Hulthin potential (HulthCn 1942), where a -1 and u=2. Usually, Rowever, the 
polynomial in T(x) for this case is not recognized as a Jacobi polyn%nial (e.g. Fliigge 
1971). An extension of the Hulthdn potential, sometimes referred to as the Manning- 
Rosen-Newingpntential (Manning and Rosen 1933, Newing 1935,1940), retains a = 2 
but no longer requires a = 1. Solutions to this latter potential are discussed by Myhrman 
(1980) and Boudjedaa er u1 (1991). Myhrman explicitly notes the relationship of Y ( x )  



L670 Letter to the Editor 

and the Jacobi polynomia!s in his equation (34). With a, A and n as variable parame:en 
subject to the conditiuns above, the potential V ( x )  can be either a totally repulsive 
potenzial o r  an anharmonic potential well. The Manning-Rosen-Newing potential has 
attracted attention mainly as a way to generalize the Hulthdn potential to states of 
higher angular momentum L 

This new class of solvable potentials would appear to be of interest on two grounds. 
First, they may serve as models for single variable anharmonic potentials, such as the 
potentials describing diatomic electronic states. Vankni (1957) previously considered 
the Manning-Rosen-Newing potentials in this case, and concluded that the Morse 
potential gave the best all-around results. However, diiierent w l w s  fm+k parametes 
could poss:biy give improved results. Second, of greater theoretical interest is the result 
that for fixed Y and A, the energy eigenvalues are identical. Supersymmetric quantum 
mechanics (e.g. Sukumar, 1985) can he used to generate partner potentials for a 
Hamiltonian H which remove the ground state, add a state helow the original ground 
state, or maintain the original eigenvalues. Given that supersymmetric quantum 
mechanics predicts a result demonstrated in this new class, its supersymmetric 
properties bear further investigation. 
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